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ABSTRACT

Experimental observations show that the presence of small tabs on the edge of a hot, com-

pressible jet exiting into a slower moving, colder ambient ow can increase the rate of spreading

of the jet. This suggests that the rate of mixing of the jet and the ambient uid is also increased.

In order to elucidate the physical mechanism responsible for the increased spreading rate a set

of calculations were carried out within the framework of the compressible three dimensional

Navier-Stokes equations. A series of grid re�nements were made to assess the accuracy of the

results. We �rst simulated the ow without the tabs, obtaining reasonable agreement with ex-

perimental measurements of the velocity. We then simulated the ow, without tabs, over a range

of values of the convective Mach number in order to determine the dependence of the mixing on

this parameter. Simulations with modeled tabs were also carried out. In these calculations the

e�ect of the tabs on the ow was modeled by pairs of counter rotating vortices. The results of

these calculations indeed show that the presence of the tabs increase the spreading rate of the

jet. The basic physical mechanism responsible for the enhanced spreading rate is discussed and

qualitative comparisons with ow visualizations are made.

The �rst, third and fourth authors were supported by the National Aeronautics and Space Administration

under NASA Contract No. NAS1-19480 while in residence at the Institute for Computer Applications in Science

and Engineering (ICASE), NASA Langley Research, Hampton, VA 23681-0001.
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1 Introduction

Two programs have been initiated by NASA that have identi�ed engine noise reduction as an

enabling technology. These programs are the NASA High Speed Research (HSR) and Advanced

Subsonics Technology (AST) programs. In the HSR program, jet noise is the principle contrib-

utor. In the AST program, jet noise is the principle contributor for aircraft in the current eet,

where a goal of 3dB reduction is established for aircraft engines with bypass ratios up to 5. Meth-

ods used to reduce jet noise in both programs often utilize concepts that enhance mixing between

high and low speed streams (Seiner and Krejsa[1]). Of these, the most popular methods utilize

concepts that introduce streamwise axial vorticity. Often this is accomplished through the use

of a lobed mixer with ejector (Presz[2]; Tillman, Patrick and Peterson[3]). Other methods utilize

tab-like devices to generate a pair of counter-rotating axial vortices to enhance stream mixing

(Ahuja and Brown[4]; Samimy, Zaman and Reeder [5]; Zaman[6]; Ahuja[7]; Zaman, Reeder and

Samimy[8]).

Although it has been known for a number of years that tabs can have a substantial e�ect on

jets [9], many of the details and the physical mechanisms involved are unclear. The recent

experimental studies mentioned above have been directed to increasing understanding of the

modi�cation of the jet caused by di�erent numbers and placements of tabs as well as the mech-

anism responsible for the e�ect of the tabs. While these experiments have shed some light on

the phenomena of jet modi�cation by tabs, further study of this e�ect is desirable.

To date there has been little use of numerical modeling in the study of the e�ect of tabs on jets.

A signi�cant exception is the very recent work of Grinstein, Gutmark, Parr, Hanson-Parr and

Obeysekare [10]. They reported the results of a combined experimental and computational study

of both reacting and non-reacting subsonic jets with circular cross-section. These jets were ex-

cited in an axisymmetric mode and tabs were present in the experiment and were modeled in the

computation. The authors modeled the streamwise vortices generated by the tabs by including

an azimuthally varying, steady radial velocity at the inow boundary which was found to in-

duce streamwise vortices downstream of the inow. In all of their calculations �ve symmetrically

placed tabs were modeled and they found good qualitative agreement with experiment.

In the present study numerical simulations are also used to evaluate the mixing e�ectiveness

of tab-like devices located at the trailing edge of a single slot nozzle with an injector. This

con�guration was selected because of the simple nozzle surface geometry and the existence of

experimental data to guide the computational simulations. We used a di�erent, somewhat more

direct method of modeling the streamwise vortices produced by the tabs than the method of

Grinstein, et al.[10]. We also modeled the ow of several di�erent numbers and con�gurations

of tabs. The purpose of this study is three-fold. The �rst involves determining mixing rates

for the undisturbed shear layer over a range of convective Mach numbers. The second involves

determination of the placement and number of tabs at the nozzle trailing edge in order to achieve
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increased mixing and the determination of the inuence of ejector duct sidewall boundaries.

Finally, the third objective is to elucidate the physical mechanisms responsible for the increased

spreading rate in the presence of tabs.

The calculations were based on the compressible three-dimensional Navier-Stokes equations. In

this work the tab induced vortex strength and size were speci�ed as input parameters for mixing

rate optimization. Numerical simulations and comparisons to experimental data are performed

at the speci�c ow parameters of the experiment. Calculations are also made over a range of

shear layer convective Mach numbers to evaluate mixing e�ects due to shear layer temperature,

density and velocity ratios. All of the results are compared on the basis of a mixing e�ectiveness

parameter de�ned in the text.

The problem formulation, including equations, boundary conditions, the modeling of the tabs

and the diagnostic parameters for the mixing are given in Section 2. Section 3 contains the

results of the simulations including those on the sensitivity to grid sizes. A discussion of the

basic physical mechanism responsible for the enhanced spreading of the jet is in Section 4.

Section 5 contains qualitative comparisons with the results of ow visualizations. Finally, a

summary and conclusions are given in Section 6.

2 Problem Formulation

The ow con�guration is a jet exiting from a slot (of height D) into a square duct (of height and

width H) in which there is a coow. The jet spans the duct and is located equidistantly from

the top and bottom of the duct. Figure 1 is a schematic of the channel and coordinate system.

In these calculations H=D = 4:38 and the length of the channel is 23:76 D = 5:43 H . These

particular dimensions were chosen so as to model the experiments discussed in Section 3.2. The

jet speed is U1 with temperature T1, and the coowing jet has a speed of U2 and temperature T2.

In addition to the velocities and temperatures, the pressures or densities must also be prescribed

at the inlet of the supersonic jet. We choose to set the pressures P1 and P2.

In addition to the slot width and the fUj ; Tj; Pjg the ow is characterized by the Mach numbers

of the jet and coow at the inow boundary

Mj =
Uj

cj
; j = 1; 2; (1)

with the sound speeds

cj =
q
 R Tj ; j = 1; 2; (2)

where  is the ratio of speci�c heats and R the gas constant. In the calculations whose results are

presented here, the jet was always supersonic and except for one case, the coow was subsonic.
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It is now well known that the growth of the mixing layer between coowing streams is dependent

on, at least in part, the convective Mach number

MC =
U1 � U2

c1 + c2
: (3)

The calculations reported here had a range of MC from 0:601 to 1:183.

Finally, the ow is characterized by the jet Reynolds number. The appropriate length scale

is the jet width D. The appropriate velocity scale is the di�erence between the inow speeds of

the jet and the coow because it is the true measure of the shear in the mixing layer at the jet

interface. Thus the jet Reynolds number is

Re =
(U1 � U2)D

(�1=�1)
(4)

with �1 the viscosity and �1 the density of the gas at the jet inow. Typical values of Re for

the cases reported here are in the range 1:0� 105 � Re � 2:5� 105.

2.1 Equations

The governing equations for this ow are the mass conservation equation

@�
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and the energy equation
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together with the equation of state,

p = R � T: (10)

As usual, � is the density, the fujg are the velocity components, p is the pressure, e = CvT is

the internal energy per unit mass, T is the temperature, � is the thermal conductivity, Cv is the
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speci�c heat at constant volume and � is the viscosity coe�cient. The viscosity is computed

using Sutherland's law

� = �o T
3=2=(110:0+ T ): (11)

It is assumed that the bulk viscosity coe�cient is zero and that Cv and Cp, the speci�c heat at

constant pressure, are constant. Finally, the Prandtl number is assumed constant and equal to

0:72.

We also assume the ow to be laminar. In the experiments of Samimy, et al.[5] and Zaman, et

al.[8] some of the con�gurations were, in their words, \nominally laminar" and others \nominally

turbulent". In both cases they found that the experimental results were virtually identical. It

appears that the dominant physical mechanism is the presence of the strong streamwise vortices

generated by the tabs. Thus we expect that the laminar ow modeling in our calculation will

not change the overall structure of the results.

The equations are approximated by �nite di�erences on a grid with (Nx; Ny; Nz) points in the

(x; y; z) directions, respectively. A uniform grid is used in the x direction and a slightly stretched

grid is used in the y � z plane to take into account the boundary layers at the walls. Figure 2

shows a (101� 101) grid in the y � z plane. The slightly increased resolution near the sidewall

boundaries is apparent as is the nearly uniform grid throughout the central portion of the

domain. The �nite di�erence equations are solved by a time accurate MacCormack predictor-

corrector scheme (Peyret and Taylor[11]). The results of grid re�nement studies are presented

in Section 3.1.

2.2 Boundary and Initial Conditions

The inow conditions are set as speci�ed above. In most cases the top, bottom and side walls

are taken to be impermeable, no-slip and insulated boundaries. In a few cases periodic boundary

conditions are used in place of the side wall boundaries. This is done in order to asses the e�ect

of the solid side walls on mixing for both cases with and without tabs. On the top and bottom

walls (z=H = 0; 1) the velocity is set to zero and a zero gradient of pressure and temperature

is imposed. The sidewalls (y=H = 0; 1), are treated the same as the top and bottom walls if

they are taken to be solid. If the domain is taken to be periodic in y, the velocity, pressure,

temperature and density at y=H = 0 are equal to the velocity, pressure, temperature and density

at y=H = 1.

On the outow boundary the velocity, temperature and pressure are obtained by extrapolation

from the grid point upstream. This extrapolation is exact for quantities within the supersonic

jet but is not so in the subsonic region outside the jet where its use can induce partial reections.
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The e�ect of this outow boundary condition, in particular its upstream e�ect, is discussed in

detail in Section 3.1 where we show that the e�ect does not change our results in any signi�cant

way.

The initial condition is to set the velocity, temperature and pressure everywhere within the

domain equal to the inow velocity and then time step until a steady state ow �eld is reached.

Generally, it is found that a few thousand time steps are required. As a criteria for convergence,

the mass ow rate is computed and is found to vary by no more than 1% at any time during

the simulations.

2.3 Modeling the Tabs

Possible physical mechanisms by which tabs produce streamwise vortices has been discussed by

Samimy, Zaman and Reeder[5]; Zaman[6]; and Zaman, Reeder and Samimy[8]. One possible

mechanism is the stripping and rolling up of the boundary layer by the tab. Another possible

mechanism is the e�ect of an upstream pressure gradient caused by the presence of the tab.

Either mechanism could produce streamwise vortices. For either mechanism, the direction of

rotation of the vortex pair could be controlled by the orientation of the tabs[5]. Based on their

experimental observations, Samimy, et al.[5] conjectured that a delta or triangular shaped tab

placed on edge of a jet with the apex leaning downstream would produce a pair of vortices of

the \trailing vortex" type and if the apex were pointing upstream the pair of vortices would

be of the \necklace vortex" type. In their terminology, the di�erence between these types is

the sense of rotation. The sense of rotation of the \necklace vortex" pair is such that, between

the vortex pair uid is moved from the jet into the coow while for the \trailing vortex" type,

between the vortex pair uid is moved from the coow into the jet. In a later study, Zaman, et

al.[8] were able to show, via ow visualization, that tabs produced di�erent ows depending on

whether the apex of the delta tab pointed upstream or downstream. By way of comparison we

note that Grinstein, et al.[10] use the term \delta-wing vortex" instead of \trailing vortex" and

\mushroom vortex" for \necklace vortex". In this paper we adopt the terminology of Samimy,

et al.[5] and denote the trailing vortices as either \necklace" or \trailing".

In the present study it is not possible to directly add small physical tabs to the geometry because

of the limitations on the spatial resolution in the code. Instead we model their e�ect by assuming

that each tab generates a pair of counter rotating vortices. We introduce a simple model ow

generated by these vortices on the inow boundary. Figure 3 is a sketch illustrating the basic

geometry. The point (Yo; Zo) is the center of one of the vortices. The point (Yj ; Zk) is any grid

point on the inow boundary. The radial distance between these points is r. We assume that
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the vortex at (Yo; Zo) generates a circumferential velocity, V�, at (Yj ; Zk) which is given by

V� = V0

�
b

r

�h
1� e�(r=b)2

i
; (12)

with b the scale of the vortex and V0 the amplitude. Then at (Yj ; Zk) the cartesian components

of the velocity are

Vj;k = V� cos � ; Wj;k = V� sin � : (13)

In a counter rotating vortex pair, one has a positive V0 and the other has a negative V0. At each

grid point on the inow boundary we sum up the contributions to (Vj;k;Wj;k) from each of the

vortices, yielding the total inow values of (Vj;k;Wj;k). In a similar way we modify the inow

pressure �eld to account for the vortices. The sense of rotation of the vortex pair is set by the

sign of V0. As will be shown below, if V0 is positive the vortex pair is a \necklace" vortex pair

and is a \trailing" vortex if V0 is negative.

Because of the relative simplicity of the tab modeling, one can only expect that the major

features of the actual ow �eld resulting from the presence of the physical tabs will be captured

in the calculation. The �ne details of the physical ow in the near �eld of the tabs will be

missing from the calculations. Nevertheless, we expect to predict correctly the major features

of the ow, the trends as the ow parameters are varied, and to be able to elucidate the basic

physics of the tab-jet interaction.

2.4 Measures of the Mixing

A qualitative judgement of the e�ectiveness of tabs in promoting mixing between the jet and

the coow can be obtained by comparing the velocity �elds of the same ow without tabs and

with tabs. In addition to comparing the velocity �elds, two measures of the e�ectiveness of the

tabs were used.

The �rst measure of the mixing e�ectiveness is the increase in the jet thickness with tabs present

as compared to the thickness with no tabs. The jet thickness, �, is de�ned by

�(x) = zupper(x)� zlower(x); (14)

where zupper(x) is the position of the upper edge of the jet, averaged over the channel width and

zlower(x) is the position of the lower edge of the jet, also averaged over the channel width. The

de�nition of the edge of the jet is the z position at which U is equal to 1.02 times the speed of

the main portion of the coow.

The second measure of the mixing e�ectiveness is a mixing parameter, �. This is de�ned by

� = 1�

�
I1

I2

�
; (15)
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where

I1 =

Z Z
� u jTox � Tomj dy dz; (16)

and

I2 =
Z Z

� u jToe � Tomj dy dz; (17)

with the integration being over the cross section of the channel. In this de�nition, Tox is the

local stagnation temperature, Toe is the stagnation temperature at the entrance to the channel

and Tom is stagnation temperature of the fully mixed ow. The stagnation temperature of the

fully mixed ow is given by

Tom =
M1T1 +M2T2

M1 +M2
(18)

and the Mj 's are the mass ows of the jet (1) and the coow (2); see Figure 1. A totally

unmixed ow will have � = 0 and a completely mixed ow will have � = 1.

3 Results

We present, in the �rst subsection below, results showing the e�ect of varying the size of the

computational grid. In the next subsection results for the case of no tabs are given. Some of these

results are compared to existing experimental data. Others show the e�ect of periodic sidewalls

as compared to solid sidewalls as well as the e�ect on the mixing of varying the convective Mach

number. Finally, the results of simulations with tabs are presented in the last subsection.

3.1 Grid E�ects

A series of grid re�nement calculations were carried out in order to asses the grid e�ect on

the accuracy of the results. The speci�c ow parameters are those of Case 1 in Table 1. The

conditions (M1 = 1:566, M2 = 0:634, MC = 0:601 and Re = 1:30 � 105) are representative of

the mid-range of the ow parameters used in the set of simulations. In these calculations Nx

was held constant at a value of 145. The (Ny; Nz) grids on the y � z plane were taken to be

(51� 51), (76� 76), (101� 101) and (126� 126).

Pro�les of U , the streamwise component of the velocity, and the temperature, T , at x=D = 6:0

are shown in Figure 4. These pro�les are at y=H = 0:5. The results for all four of the grids are

shown in the plots. The thin viscous boundary layers on the top and bottom walls, the shear

layers on the edge of the jet and the thermal boundary layers on the top and bottom walls can

be seen. It is clear that the results are somewhat di�erent, depending on the grid. It can be seen

that the coarsest grid results di�er the most from the �nest grid results. However, it is di�cult
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to determine the magnitudes of the di�erences from this �gure. For this reason we calculated

the di�erences between the values of U and T on the (51� 51), (76� 76) and (101� 101) grids

and the values on the (126� 126) grid. Of course this can only be done at grid points common

to all grids. These results, for x=D = 1:0; 4:0; 6:0 and 10:0 are shown in Figures 5 and 6. It

is apparent that the di�erences between the results with (51� 51) or (76 � 76) grids and the

(126� 126) grid are fairly large. The di�erences between the (101� 101) grid and the �ner grid

are always less than or about equal to 5% and are usually about 2% or less. We concluded that

using a (101 � 101) grid in the y � z plane gives reasonable, within a few percent, accuracy.

This conclusion is borne out by the results shown in Figure 7; a plot of � as a function of x=D

for all four grids. For all of these cases shown � increases rapidly up to about x=D = 2 and

then increases linearly, with a small slope, with increasing x=D. In all of these cases the slope

is about the same; the di�erence occurs in the �rst two or three jet widths downstream of the

entrance. The coarsest grid gives the largest values of � and conversely. It is also clear that the

results on the �nest two grids are quite close and that we can extrapolate the values of � to zero

grid spacing.

As noted above, the velocity, temperature and pressure on the outow boundary are obtained by

extrapolation from the grid point upstream. This extrapolation is exact for quantities within the

supersonic jet but is not so in the subsonic region outside the jet where its use can induce partial

reections. In order to assess the magnitude of these we carried out additional calculations. We

noted that this treatment of the outow caused what appears to be a small distortion of the ow

over a distance of less than one channel height upstream of the outow boundary. In the �rst

of these calculations we veri�ed that this distortion is due to the subsonic portion of the ow

by setting both the coow and the jet to be supersonic. The distortion disappears except for a

small remnant in the subsonic viscous boundary layers on the walls. In the second calculation

we sought a quantitative measure of how far the distortion extends upstream when the coow

is subsonic. In this calculation the grid in the y � z plane was kept at (101� 101) and the grid

spacing in the streamwise (x) direction was also held �xed but the number of grid points in

the x direction was reduced from 145 to 109. Thus the streamwise extent of the computational

domain was reduced by 25%; this is called the short domain in contrast to the full domain with

145 grid points in the streamwise direction. We ran the calculation for the short domain using

the ow parameters of Case 1. If there were no e�ect of the outow boundary conditions the

ow �eld in the short domain would be identical to that in the �rst 75% of the full domain. Any

deviations are due to the outow boundary conditions and one can readily determine how far

upstream from the outow boundary a signi�cant e�ect exists.

As was expected, the di�erence in ow quantities between the short and full domain at the

same distance from inow are largest within the wall boundary layer and are smallest in the

supersonic jet. At a distance of 0:4H upstream of the outow of the short domain the di�erences

in the velocity, temperature and pressure between the full and short domain are at most 3%
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in the wall boundary layer, 1% in the subsonic coow and about 0.3% in the supersonic jet.

Further upstream, at 1:06H from the outow of the short domain, the di�erences in the velocity,

temperature and pressure between the full and short domain are about 2% in the wall boundary

layer, about 0.5% in the subsonic coow and less than or equal to 0.1% in the supersonic jet.

Further upstream these di�erence are even smaller. As will be seen from the results presented

below, the wall boundary layers play no role in the interaction of the streamwise vortices with the

jet. It is clear that the outow boundary condition has virtually no e�ect on the ow upstream

of about one channel width of the end of the computational domain. In general we do not use

any of the computational results within a distance of one channel height upstream of the outow

boundary. Throughout the remainder of this paper, all results presented were obtained on a

(145� 101� 101) grid.

3.2 Comparison with an Experiment

A limited set of experimental measurements are available for the case of the mixing of a hot

supersonic jet with a colder subsonic coow. The uid of both the jet and the coow was air.

The source of the coow was air at atmospheric pressure and temperature. The experimental

domain was 0.16 m long (x direction) with a cross section of 0.0442 m (y) � 0.0442 m (z). The

thickness of the jet at the inow was 0.0101 m. Thus we set D = 0:0101 m and H = 0:0442 m

for the computation. For the simulation we set the temperature and pressure of the coowing

air to be T2 = 300oK and P2 = 1:01325 bar, respectively. The pressure and temperature in the

pressure vessel driving the jet are known. The hot, high pressure air ows out of the pressure

vessel through a nozzle but we had no information on the geometry of the nozzle. The jet

expands and cools while owing through the nozzle.

Time averaged measurements of U , the x component of the velocity, were made at a number of

stations on the centerline of the jet beginning just outside the nozzle. In addition, pro�les of U

as a function of z were made at three locations downstream from the exit plane of the nozzle.

These measured data are shown in Figures 8 (as a �) and 9 (as a +). Some of this experimental

data is used to obtain the inow conditions for the simulation.

First, the pro�le data (Figure 9) show that the coow speed was U2 = 220 m/s. The measured

values of the velocity on the jet centerline are shown in Figure 8a (denoted by �). The measured

velocity drops as the jet exits from the nozzle, then increases further downstream and continues

to oscillate with distance until it begins to decrease monotonically at about x=D = 13:0. The

decrease in the jet speed after exiting from the nozzle indicates that the jet pressure is increasing.

That is, the jet was over expanded in the nozzle and undergoes a compression just outside the

nozzle. This is followed by a series of subsequent expansions and compressions, with decreasing

amplitude, further downstream. This data shows that we must set the jet pressure slightly
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less than that of the coow (which is at atmospheric pressure). We adjusted the pressure,

temperature and speed of the jet in order to get reasonable agreement with these centerline

velocity measurements. Thus for the jet we set P1 = 0:92� P2, T1 = 490o K and U1 = 695:0

m/s. With these values at the inow, the Mach number of the coow is 0.634 and that of the

jet is 1.566. The Reynolds number of the jet is 1:20� 105.

Figure 8a shows plots of the computed U on the jet centerline (solid line) and the measured values

(�). There is fair agreement; it appears that there is a small o�set between the location of the

peaks of the computed U and the measured values. Shifting the computed curve by about 0:4 D

would bring it into good agreement with the measurements. The oscillations in U are caused

by a sequence of compression and expansion standing waves in the channel outside the nozzle.

These pressure oscillations are obvious in the computed centerline pressure distribution shown

in Figure 8b. The maxima and minima in the calculated velocity and pressure are exactly out of

phase. The presence of the expansion and compression waves means that the jet is undergoing

small spatial oscillations in size on top of a general spreading of the jet. The calculated pro�les

of U are compared to the measured pro�les in Figures 9 at x=D = 1:0; 2:5 and 10:0. In each

of these �gures the solid line is the calculated value and the + denote the measured values.

There is, again, fair agreement between the calculated and measured pro�les. The di�erences

between calculated and measured values of the maximum speed is mainly due to the shift in the

maximum value on the centerline seen in 8a. The measurements also show a somewhat thicker

jet than do the calculations. We attribute this to the fact that the calculations are for a laminar

ow while the mixing layer between the jet and the coow was turbulent in the experiments.

The agreement between calculation and experiment is good enough to suggest that the major

features of the ow, the trends as the ow parameters are varied and the basic physics of the

tab-jet interaction can be captured by the calculations.

3.3 Mixing: No Tabs

In this section we �rst show how the mixing varies with ow parameters in the absence of tabs.

Figure 10 is a plot of the variation of the mixing parameter � with downstream distance. The

results shown in this �gure illustrate how the mixing changes with changes in the convective Mach

number. The curves are labeled with the value of MC . There are two curves for MC = 0:601.

The solid one is the result of using the input data of Case 1 in Table 1 and the dashed curve

uses the input data of Case 2. The only di�erence is that the jet pressure for Case 2 is 92% of

that for Case 1, and is clear that it has no e�ect on the mixing.

In Figure 10 results are shown for three di�erent values of MC , 0.601 (Cases 1 and 2)), 0.782

(Case 5) and 1.183 (Case 4). With MC = 1:183 (Case 4), � is very much larger than with

MC = 0:782 or 0:601 at distances more than one jet thickness downstream of the entrance. As
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compared to the Cases 1, 2 and 5, the jet speed is much higher for this Case although the jet

temperature is the same. Again as compared to Cases 1, 2 and 5, the coow speed is much

lower and its temperature is slightly lower. The net e�ect is that the Mach number of the jet is

increased to 2.141, that of the coow is reduced to 0.158 and the jet Reynolds number increases

to 2:473�105. The overall increase in � due to the increase in MC is substantial; at x=D = 10:0,

� with MC = 1:183 is 2.3 times larger than with MC = 0:601 and 1.6 times larger than with

MC = 0:782. The same trend is also observed when the variation of �=D with x is compared

at di�erent values of MC as in Figure 11. Again we see that changing the inow pressure has

almost no e�ect on the mixing measure but changing MC does. Changing MC does not have as

large an e�ect on � as on �; the magnitude of the change in �=D is, at X=D = 10:0, less than

20%.

It is obvious that changingMC has a large e�ect on �. In order to gain insight into the reason for

this, we show in Figure 12 pro�les of the normalized streamwise velocity component, U=Uo, and

temperature, T=To, as a function of the dimensionless height, z=H , at y=H = 0:5 and x=D = 4:0

at di�erent values of MC . In each case the velocity and temperature are scaled by the values

of the velocity (Uo) and temperature (To) of the jet at the inow boundary. Note that in this

�gure the solid line denotes results for MC = 0:601; the long dash line for MC = 0:782; and the

short dash line for MC = 1:183. In order to increase MC we decrease the speed of the coow

relative to the speed of the jet. This is apparent in the U=Uo plot. The increased shear led to

a progressive thickening of the velocity mixing layers between the jet and the coow. At the

highest value of MC (1.183), the increased viscous dissipation leads to a local increase in the

temperature within the mixing layers; this can be seen in the T=To plot. As a result of these,

apparently, small modi�cations of the ow there was a signi�cant increase in the value of � just

downstream of the entrance.

The results shown here are for a purely laminar ow; the mixing is controlled by laminar di�usion

of momentum and heat. From the curves of Figures 10 and 11, it is apparent that the jets

mix rapidly over a distance of three to four jet widths downstream from the inow boundary.

Thereafter the rate of growth of the jets is quite modest. In this region the increase of � with

distance is about the same for each of these cases. This can be seen by noting that the curves

are approximately parallel after about four jet widths downstream. The initial rapid thickening

of the mixing layer is primarily due to the step increases in velocity and temperature between

the jet and the coow, imposed at the inow boundary, and their subsequent spread by laminar

mixing.

It may seem surprising that, for a purely laminar ow, the mixing parameter, �, increases with

MC . However it can be shown that this also occurs in the case of the laminar, compressible

mixing layer. To see this we take the mean pro�les of U and T in the mixing layer to be the

similarity solutions given by Grosch and Jackson[12]. In their notation the dimensionless speed
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and temperature in the coow are scaled to be one and the dimensionless speed and temperature

in the jet are scaled to be �U and �T , respectively. With this notation the convective Mach

number is

MC =

�
�U � 1

�T + 1

�
M; (19)

with M the the Mach number of the coow. Holding M �xed, MC increases with increasing

�U . Substituting the similarity solutions[12] into the de�nition of � (equations 15 - 17, above)

it is found that � increases with increasing �U , i.e. with increasing MC . This e�ect occurs in

the laminar mixing layer (which can serve as an approximation for the mixing layers on the

edges of the jet) in the absence of instability waves and large scale turbulent structures. If

there were instability waves in these numerical calculations for the jet their growth rate would

decrease with increasing MC
[13]. The shear layers between the jet and the coow are inviscidly

unstable. Because the convective Mach number is greater than or equal to 0.6 in the calculation,

the growth rates of the instabilities are much smaller than at zero Mach number. The grid

resolution is su�cient to represent the mean ow pro�les in these shear layers, however it is

not su�uicient to properly represent the structure of the instability waves. In our calculations

we never observed any instability waves. We note that the experimental results presented in

the papers of Samimy, et al. and Zaman, et al. also show no evidence of instability waves. It

appears that the strong streamwise vorticity induced by tabs dominates the ow dynamics and

that instabilities are relatively unimportant. Again if there were large scale turbulent structures

present in these calculations we expect that their e�ect on the spreading would decrease with

increasing convective Mach number[14]. Because there are no instability waves or large scale

turbulent structures in these calculations these e�ects with increasing MC are not seen.

3.4 Mixing: Tabs

In the calculations reported here we used zero to eight of these model tabs; that is, pairs of

counter rotating vortices. For an even number of these model tabs half are on the upper edge

of the jet inow and half are on the lower edge. If the number of tabs is odd, the additional

tab is set on the upper edge. On both edges the tabs are uniformly spaced; for example for the

case of six tabs they are centered one quarter, half and three quarters of the way across the

span. In some cases we choose V0 to be positive, hence an individual pair of vortices is of the

\necklace" type. This has the e�ect that the induced ow at the centerline of the jet and near

the sidewalls is away from the sidewalls. In other cases we choose V0 to be negative, producing

\trailing" vortices and an induced ow at the centerline of the jet and near the sidewalls toward

the sidewalls. As will be discussed in the next section the results of the calculations show that

the magnitude of the mixing depends on which type of vortex is generated.
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Figure 13 is a plot of the mixing e�ectiveness parameter, �, as a function of x=D for di�erent

numbers of tabs. The curves are labeled with the total number of tabs. Those curves additionally

labeled with \T" are the result of calculations with negative V0 and each pair of vortices is of

the \trailing" type; the other curves were the result of calculations with positive V0 and each

pair of vortices is of the \necklace" type. The calculations with tabs use the same inow data as

that without tabs. In all cases one can see that in the near �eld of the entrance, say within two

or three D downstream of the inow boundary, the presence of the tabs has only a slight e�ect

on �. However, beyond about three jet thicknesses downstream, the mixing is greatly increased

by the presence of the tabs. Throughout this region of the computational domain � is increasing

linearly with x=D. It is obvious that the slope of the � � x=D curve depends on the number of

tabs. The biggest increase in the slope of this curve occurs when a few tabs are added. Adding

more tabs then has a diminishing e�ect. For example, at x=D = 14:0, the value of � with two

tabs is 1.56 times as large compared to no tabs, with four tabs the ratio is 2.08, with six tabs it

is 2.44 and going to eight tabs only increases this ratio to 2.49. The mixing parameter increases

by 56% when going from zero to two tabs; by 33% going from two to four tabs; by 17% going

from four to six tabs and only by 2% going from six to eight tabs. Because of the near linearity

of these curves beyond x=D � 3:0, this holds at all x=D. The basic reason for this decrease in

the marginal gain in mixing is that adding more tabs in a channel of �xed width causes them

to be closer together. This increases the mutual interference and decreases the mixing.

The curves labeled 2 � T and 4 � T are the result of a computation with two and four tabs,

respectively, but with V0 negative and, in contrast to the other computations, vortices of the

\trailing" type. For these two cases the vortex induced ow on the jet centerline near the

sidewalls is directed towards the sidewalls. The mixing for both these cases is substantially

less than for the corresponding cases with two and four tabs having positive V0 and \trailing"

vortices. The ow �elds for these cases are discussed and compared in the next section.

To determine the e�ect of the sidewalls on mixing a few calculations are carried out with periodic

boundary conditions in the y direction. A total of six tabs were used. They were positioned

three on each of the upper and lower edge of the jet. The centers of the pairs of counter rotating

vortices modeling the tabs were placed at y=H = 1/6, 1/2 and 5/6. This modeled an in�nite set

of tabs with a spacing of 1/3 on centers. The plot of � vs x=D is shown in Figure 13 by the short

dashed line. For small values of x=D, � for the periodic ow is small; however as x=D increases

� increase faster than for the cases with solid side walls. Towards the end of the computational

domain the periodic case has the largest values of �. We think that this is due to the decrease

in the dissipation because of the removal of the side boundaries. The ow �eld for the periodic

case will be discussed in more detail below.

The e�ect of tabs on the jet thickness is shown in Figure 14 where we plot �=D as a function of

x=D. As with �, the presence of tabs has the e�ect of increasing � but, relatively, not as much.
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Note that the periodic case has the largest values of � at small x=D and is nearly identical to

the solid side wall case with six tabs at larger x=D. The case of eight tabs yields nearly the

same thickening of the jet as does that with only four tabs. This, again, shows the decreasing

e�ectiveness of having more than six tabs. Overall, beyond x=D � 10:0 there is a maximum

increase in �=D of 25% with six tabs and solid side boundaries or periodic side boundaries as

compared to the no tab case. All of these curves show oscillations in �=D with x=D. The value

of � is quite sensitive to small perturbations in the shear layers separating the jet and the coow.

The presence of the tabs caused small oscillations in the pressure �eld near the inow boundary.

These propagate downstream and generate a small thickening and thinning of the jet; observed

as the oscillations in �=D. The ow �eld generated by the vortices which cause this greatly

enhanced mixing will be discussed in detail in a later section.

4 Flow Structure

These results show that tabs cause increased mixing of the hot compressible jet. In this section

we present results showing the ow structure in order to elucidate the mechanism which causes

this. We show the ow structure for both positive and negative V0 with associated vortices of

the \necklace" type and of the \trailing type, respectively. Only the velocity �eld is shown in

the �gures which are discussed below. The other dependent variables have a similar structure.

All of the results shown here are done with inow conditions of Case 2 as given in Table 1.

We �rst show the velocity �eld in the absence of tabs. Figure 15 shows contours of the streamwise

component of the velocity, U , at x=D = 14:0. The central, high speed jet has a uniform core

(speed of 631.165 m/s) extending over the central 20% of the channel. Away from the sidewalls,

the jet shear layers are uniform across the span and each has a thickness of about three quarters

of the size of the core. The coow jets above and below the central jet also have a uniform core.

The wall boundary layers are clearly visible. There is some slight distortion of the side wall

boundary layers. In these regions modest values of (V;W ) are found due to the growth of the

boundary layers with downstream distance. Except for the scales, i.e. the speed of the jet core,

the thickness of the mixing layer between the jet and the coow, and so forth, the ow at all

sections is the same. There is a laminar mixing layer which is growing slowly with downstream

distance. Both the hot, high speed jet and the coow maintain their existence with no global

mixing. Note that even fourteen jet widths downstream of the inow there is no indication of

any instabilities in the mixing layers between the jet and the coow.

We next show the ow �eld for the same inow values, but with six tabs and positive V0. Each

of the vortex pairs generated by the tabs are of the \necklace" type. At the inow of the domain

there are three tabs on the upper edge of the jet and three on the lower edge. These are placed
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at y=H = 1/4, 1/2 and 3/4. Contour plots of U , the streamwise velocity component, and vector

plots of the transverse components, (V;W ) are shown at a number of streamwise locations.

These illustrate the detail of the downstream evolution of the combined jet-vortex ow �eld.

Figure 16 is a plot of the vector �eld of (V;W ) in the y � z plane of the channel at the channel

entrance (x=D = 0:0). The set of twelve counter rotating vortices that model the six tabs are

obvious in this �gure and it is clear that each pair is of the \necklace" type. The inner vortices

are slightly weaker than the outermost ones because of the mutual interference of those on either

side. The outermost vortices are only interacting with vortices on the inside. The maximum

value of the (V;W ) velocity in this plane is 79.0 m/s.

A similar plot at x=D = 1:0 is shown in Figure 17. Some small distortion of the ow, as compared

to x=D = 0:0, can be seen. All of the vortices have moved slightly away from the centerline,

z=H = 0:5, with the outermost vortices a bit above/below the inner ones. The maximum value

of the (V;W ) velocity in this plane is 85.0 m/s, slightly higher than at inow. Figure 18 is a

contour plot of the streamwise velocity component, U , on the same plane. The cross stream

waves in the mixing layers between the jet and the coow are the direct result of the streamwise

vortices. Comparing Figures 17 and 18, the peaks in Figure 17 coincide with the outows and

the troughs with the inows from the jet core in the (y � z) plane. These are directly due to

the six pairs of vortices generated by the tabs. Note that the distortion of the mixing layer is

symmetric about its undisturbed position at this downstream location.

Figure 19 is a plot y � z plane at x=D = 4:0 of the vector �eld of (V;W ). Note that the four

interior vortices have weakened considerably. The innermost ones still exist, albeit they are very

weak. The next outermost ones have virtually disappeared. The outermost sets of vortices have

moved slightly towards the centerline, in contrast to the situation at x=D = 1:0. The maximum

value of the (V;W ) velocity in this plane is 105.4 m/s, higher than at x=D = 1:0. Using this

�gure alone it is di�cult to identify any of the organized vortex pairs generated by the tabs.

The further downstream evolution of the ow is shown in Figures 20 and 21. The (V;W ) vector

�eld at x=D = 10:0 is plotted in Figure 20 and Figure 21 is a contour plot of the streamwise

velocity component, U , on the same plane. The maximum value of the (V;W ) velocity in this

plane is 69.1 m/s, substantially lower than at x=D = 4:0. The vortex structure in Figure 17

retains much of the symmetry observed at the upstream planes but also shows non-symmetric

features, particularly in the central region of the ow. The four outermost vortices are much

stronger than the inner ones and have moved o� towards the corners of the channel. Again using

only this �gure it is di�cult to identify the original set of vortex pairs. The velocity contours

shown in Figure 21 are very symmetric and has evolved markedly from the �eld at x=D = 1:0

shown in Figure 18. Fingers of the hot, high speed uid from the jet have been moved into the

colder, low speed coow and in return �ngers of the colder, low speed uid have been transported
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into the central jet and have split the original jet into 3 distinct jets on the centerline. These

contours show a very high degree of symmetry. It is clear that the interpenetrating �ngers have

been generated by the action of the streamwise vortices.

Figures 22 and 23 show the same ow �eld further downstream, at x=D = 14:0. The further

evolution of the ow from that at x=D = 10:0 is clear. The outer vortices have moved further into

the corners of the channel and are more asymmetrical. The inner vortices are much weaker and

more disorganized than upstream and appear to be in the process of merging. The contours of U ,

the streamwise component of the velocity, as seen in Figure 23 are also somewhat distorted but

retain much of the symmetry found upstream. The core jet has shrunk, compared to upstream,

the high speed �ngers are nearly impinging on the channel walls, the low speed �ngers have

nearly merged in the central part of the channel and the shear layers have thickened further.

Finally, it should be noted that the most prominent features in Figure 23 are the hot, high speed

�ngers of uid displaced outward from the jet into the coow.

Similar evolution of the ow �eld was observed with di�erent numbers of tabs with V0 positive,

thus generating \necklace" vortices. To show this, we give a number of results for the case of

four and two tabs. Results are also given for negative V0; these illustrate the e�ects of \trailing"

vortices on the overall ow.

Figure 24 shows vectors of (V;W ) on the inow boundary, at x=D = 0:0 with positive V0. There

are two tabs on both the upper and lower edges of the jet at y=H = 1/3 and 2/3. The maximum

value of the velocity on this plane is 84.5 m/s. This is slightly higher than was the case with six

tabs (79.0 m/s) and is due to the reduction in the mutual interference. Note that with positive

V0 and \necklace" type vortices, the ow along the centerline (z=H = 0:5) is away from the side

boundaries in the region near the side walls. Figures 25 and 26 show the result of the downstream

evolution of the ow �eld with four tabs and positive V0. Figure 25 shows the vectors of (V;W )

on the plane at x=D = 14:0; there is a maximum value of the velocity of 56.9 m/s. Figure 26

shows the corresponding contours of U . From Figure 25, we see that the inner vortices have

paired, interacted strongly, have weakened considerably and nearly disappeared. However, the

outer vortices have strengthened and moved towards the upper and lower boundaries. This �eld

is not quite symmetric about the y and z centerlines. The similarity to the (V;W ) �eld, at the

same x=D location, resulting from six tabs (Figure 22) is clear. The U contours in Figure 26

show a high degree of symmetry. The interleaving of �ngers of hot, high speed uid and cold,

lower speed uid is present with the �ngers of hot, high speed uid being the most prominent

feature. Because of the interaction with the upper and lower walls, the �ngers are beginning to

curl over. In this case, the number of �ngers is reduced to two on each side of the jet as compared

to Figures 21 and 23 where three �ngers are seen on each side of the jet. This is because there

are four tabs instead of six. Again, the core of the high speed jet has nearly been split, into two

distinct jets in this case as compared to three for the case of six tabs (see Figure 23).
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The results shown in the next three �gures (27 - 29) are also for the case of four tabs but V0 has

been replaced by �V0, reversing the direction of rotation of the vortices. Thus the vortices are

of the \trailing" type as compared to the \necklace" type. Figure 27 shows vectors of (V;W )

on the inow boundary, x=D = 0:0. As before, there are two tabs on both the upper and lower

edges of the jet at y=H = 1/3 and 2/3. The maximum value of the velocity on this plane is 84.5

m/s but the sense of rotation is reversed. Note that the sense of rotation of the vortices is such

that the ow along the centerline (z=H = 0:5) is towards the side boundaries in the region near

the side boundaries. Figure 28 shows the vectors of (V;W ) of this case at x=D = 14:0. This

is a ow �eld very di�erent from that of Figure 25. The change in the sense of rotation of the

vortices causes a di�erent evolution. The inner vortices have paired and moved away from the

centerline. They are generating a strong outow from the jet in the region of y=H = 0:5. As

compared to their original positions, the outer vortices have only moved a little towards the side

walls and there is virtually no displacement of them towards the top and bottom walls. The

result on the U �eld is shown in Figure 29 and it is substantially di�erent from that resulting

from the \necklace" vortices as seen in Figure 26. A large �nger of hot, high speed uid is

ejected towards both the upper and lower walls of the channel from the jet along the y=H = 0:5

centerline. This leaves a single, small high speed core in the center of the channel. The jet core

has also been split into two other pieces which have been moved towards the sidewall boundaries

by the outer set of vortices. This �gure thus shows �ve di�erent jets of the hot, high speed uid

of which the largest are the two in close proximity to the side walls. Also, note the high shear

near these boundaries as the high speed jet core is advected towards the sidewalls.

An examination of the con�guration of the vortices on the inow plane suggests why arrays

of \necklace" vortices should evolve downstream so di�erently from the evolution of \trailing"

vortices. Consider the \necklace" vortex pair to the left of y=H = 0:5 and above z=H = 0:5

(the upper left quadrant) in Figure 24. The mutual induction of this pair is such that it has a

tendency to move towards the top, (z=H = 1:0), of the channel. Each of the other vortex pairs,

considered alone, would also tend to move away from the midplane of the channel and toward

the top or bottom boundaries. Next consider the innermost sets of vortices. They are parts of

di�erent \necklace" vortices but they also have a mutual induction. This tends to move this

inner set towards the z=H midplane of the channel. Thus the total induction velocity of the

innermost set is small because of cancellation. This is not true for the outer vortices because

they are farther away from the members of the other pair. Thus the outer members of the array

move toward the top/bottom boundaries. The inner members are only slightly moved from their

original position and, because of their opposite sense of rotation, they tend to cancel each other.

The result is the far downstream con�guration of the \necklace" vortices shown in Figure 25.

These outer vortices cause the formation of the four �ngers of hot, high speed uid, two on each

side of the channel midplane. Note that the �ngers lie just on the inner side of the dominant

vortices. With further downstream evolution the �ngers tend to roll up on themselves.
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The \trailing" vortices seen in Figure 27 e�ect each other di�erently than the \necklace" vortices.

The mutual induction of each pair tends to move them towards the centerline (z=H = 0:5) of

the high speed jet. As with the \necklace" vortices, the innermost pair of vortices, although

being members of di�erent pairs of \trailing" vortices also interact mutually. This interaction

tends to move each of them away from the centerline at z=H = 0:5 and towards the upper and

lower walls. Thus the inner vortices tend to pair, forming an inner \necklace" pair, and move

toward the top and bottom of the channel. Again, they also tend to mutually cancel. The outer

vortices basically stay in place and transport the high speed uid of the jet core out of the center

and towards the sidewall boundaries. This is seen in Figure 28; at x=D = 14:0 the inner pairs

have weakened and moved towards the upper and lower boundaries and the outer pair are only

slightly modi�ed.

The di�erent interactions of \necklace" versus \trailing" vortices is also seen quite clearly when

modeling a single tab on each edge of the jet. Figure 30 shows vectors of (V;W ) on the inow

boundary, at x=D = 0:0 with one tab on each of the upper and lower edges of the jet at y=H =

1/2. Here V0 is positive and the vortices are of the \necklace" type. The maximum value of the

velocity on this plane is 88.4 m/s. The result of the streamwise evolution is shown in Figure 31.

The maximum value of (V;W ) on this plane is 64.6 m/s. Because of their mutual interaction

the pair of vortices above the jet have moved towards the upper wall and that below towards

the lower wall. Contours of U for this case are shown in Figure 32. In this case, as might be

expected, only a single �nger of hot, high speed uid is moved into the coow on each side of

the jet. The �ngers show great symmetry about both the y and z centerlines. At this location,

these �ngers are just beginning to interact with the upper and lower boundaries. The mixing

layer between the jet and the coow is distorted but there is still a coherent high speed core of

the jet spanning the channel.

Figure 33 shows vectors of (V;W ) on the inow boundary, at x=D = 0:0 again with one tab on

each of the upper and lower edges of the jet at y=H = 1/2. However, here V0 is negative and the

vortices are of the \trailing" type. The maximum value of the velocity on this plane is 88.4 m/s

just as for the \necklace" vortices. The mutual interaction of these \trailing" vortices tends to

keep them close to the centerline of the channel. This is just what is seen in Figure 34 which is

the result of their streamwise evolution. The maximum value of (V;W ) on this plane is 50.8 m/s

which is only about 79% of the maximum of the previous case. Both pairs of vortices have a

slightly increased spanwise separation but have remained close to the centerline of the channel.

Contours of U for this case are shown in Figure 35. The vortex circulation has pinched the jet

into a pair of jets of hot, high speed uid, one on each side of the y=H centerline of the jet.

Again there is great symmetry about both the y and z centerlines. These jets are interacting

with the side walls and the mixing layer between the jet and the coow again shows substantial

distortion.
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Finally, Figure 36 shows contours of U , at x=D = 14:0, for the case of three tabs on both the

upper and lower edges of the jet and with periodic boundary conditions in y. The tabs are placed

at y=H = 1/6, 1/2 and 5/6. Note that because periodic boundary conditions were imposed in y

the domain extends from y=H = 0:0 to y=H = 1:04. The maximum value of the (V;W ) velocity

on the inow plane was 84.6 m/s. The ow �eld is similar to that of Figure 23; that case also

has six tabs. The major di�erence is the distortion introduced by the solid side walls as seen

in Figure 23. In Figure 36, the periodic case, the magnitude of U in the central jets and in the

high speed �ngers is somewhat greater while U in the low speed �ngers is somewhat smaller

than in the corresponding case with solid side wall boundaries. It appears that this is due to

the decrease in energy dissipation resulting from periodic rather than solid side walls.

The results shown in these �gures reveal the basic physical mechanism of the interaction of the

vortices generated by tabs with a hot jet. The vortices transport the hotter, higher momentum

uid from the central region of the jet to the lower momentum region of the coow and vice

versa. They thus act to increase the z�ward transport of x momentum. This same process is,

of course, also occurring by di�usion but the vortex transport is clearly more e�ective.

These results also show that the initial con�guration of \necklace" type vortices on both the

upper and lower edges of the jet is generally unstable. The innermost vortices interact strongly

with each other, tend to be displaced, and are dissipated, starting with the next to the outermost

and proceeding inward. The outermost vortices tend to become stronger and move toward the

top and bottom of the channel. In contrast, con�gurations of \trailing" vortices tend to be much

more stable. Inner pairs do interact and move towards the upper and lower boundaries but the

outer ones tend to remain in place.

5 Comparison with Experiments

Finally, a qualitative comparison can be made between the results presented here and the results

of experiments. In particular, Samimy, et al.[5] and Zaman, et al.[8] give ow visualizations of

the jets with and without tabs. These visualizations are laser sheet illuminated cross sections

of the jet. In these the brightest bands correspond to the mixing layer between the jet and the

coow. These experiments were done with jets of circular cross section with the boundaries far

away from the jet. The simulations reported here were done with rectangular jets exiting into

a channel with the side wall bounding the jet. Nevertheless, in spite of the di�erent geometry,

there is very good qualitative agreement between our results and theirs.

Samimy, et al.[5] used tabs that appear to have generated \trailing" vortices. The ow visualiza-
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tions with two tabs on opposite ends of the nozzle diameter are shown in their Figures 7(Cont)

on page 615 and Figures 8 through 11 on page 616. These visualizations were obtained with

di�erent nozzles, tab size and shape and di�erent Mach numbers. In all cases the basic structure

of the disturbance produced by the tabs is the same; there is a \bulge" from the outer uid into

the mixing layer between the jet and the outer uid and this \bulge" grows with downstream

distance. In some of the visualizations (see their Figures 7(Cont.) and 8, in particular) the jet

bifurcates. The calculated contours of U shown in Figure 35 of this paper show a very similar

bifurcation of the plane jet at x=D = 14:0 caused by two \trailing" vortex pairs, one on each

side of the jet. This process begins near the entrance plane as inward \bulges" in both sides of

the jets, again very similar to the visualizations shown by Samimy, et al.[5].

Similar visualizations for four tabs are given by Samimy, et al.[5] in their Figure 7(Cont.). The

originally circular mixing layer is strained into four �ngers extending radially outward from the

jet with indentations between the �ngers. A similar pattern is seen in Figure 29 which contains

contours of U for the case of two sets of \trailing" vortices on each side of the jet. In between

the pairs of vortices a �nger of the high speed uid from the jet extends into the coow. A

similar, but smaller, �nger also appears between each vortex pair and the wall. Between these

�ngers indentations can be seen, aligned with the centers of the vortex pairs. The �ngers are

clearly the result of the outward ow induced by the interaction of sets of adjacent vortex pairs.

Again, there is good qualitative agreement between the results of the simulations and the ow

visualizations.

Similar ow visualizations were given by Zaman, et al.[8] for jets of circular cross section with

two, four and six tabs spaced uniformly around the jet. By changing the orientation of the

tabs with respect to the the jet ow direction, they were able to produce both \trailing" and

\necklace" type vortices and these generated di�erent ow con�gurations. Zaman, et al.[8]

showed visualizations at one x=D for zero, one, two and four tabs with apexs leaning downstream

and generating \trailing" vortices in their Figure 8. Their Figure 9 shows visualizations for two

tabs generating \trailing" vortices at several streamwise locations. Both of these Figures show

results very similar to the results of the simulations; \trailing" vortex pairs on opposite sides of

the jet cause a bifurcation of the jet and two such sets of vortex pairs in close proximity generate

a �nger of the high speed uid from the jet with indentations between the �ngers. For the case

of the tabs having their apex leaning upstream, they had predicted that the vortices would be

of the \necklace" type and the ow would be di�erent from the other cases. This was borne out

by their results, for two tabs, shown in their Figure 13. The \necklace" vortices produced an

outward \bulge" of the high speed jet ow. Very similar results are shown in Figure 32 here.

This shows contours of U for two sets of \necklace" vortices, one on each side of the jet. The

outward \bulge" of the uid from the jet with little distortion of the remainder of the jet is just

as seen in the ow visualizations.
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6 Summary and Conclusions

The ow �eld consisting of a hot, compressible jet exiting into a slower moving, colder ambient

ow was calculated using a compressible, three dimensional Navier-Stokes solver. Reasonable

agreement was obtained with experimental results. We have shown that the e�ect of tabs at the

edge of the jet can be modeled by replacing each tab with a pair of counter rotating vortices.

Both \necklace" and \trailing" type vortices can be simulated, depending on the sense of rotation

of the model vortices. Calculations of the ow with these present showed that the presence of

the tabs increased the thickness of the jet about 25% compared to the ow without the tabs,

depending on the assumed strength of the vortex circulation. The mixing parameter � can be

increased by a factor of about 2.5 by using six tabs. The e�ect of the sidewall boundaries on the

mixing was also determined by repeating the calculation with six tabs with periodic boundary

conditions in the cross stream direction. It was found that, with these boundary conditions, the

mixing increased somewhat.

The results of the calculations elucidated the basic physical mechanism of the interaction of the

vortices generated by tabs with a hot jet and that of the increased jet thickening and increased

mixing. The streamwise vortices transport the hot, higher momentum uid from the central

region of the jet to the colder, lower momentum region of the coow and vice versa. This

increases the z�ward transport of x momentum as well as increasing the mixing of hot and

cool uid. The results also show that the initial con�guration of \necklace" vortices on both

the upper and lower edges of the jet, is generally unstable. The inner most vortices interact

strongly with each other, tend to be displaced, and are dissipated, starting with the next to the

outermost and proceeding inward. The outer most vortices tend to become stronger and move

toward the top and bottom of the channel. In contrast, if the initial con�guration is a set of

\trailing" vortices on both the upper and lower edges of the jet, it is stable.

Finally, it was shown that the results of the simulations were in very good qualitative agreement

with visualizations of the ow induced by tabs on the edges of jets. This was true for both

\necklace" and \trailing" type vortices generated by di�erent orientations of the tabs in the

experiments.

Additional simulations of the interactions of streamwise vortices with jets of circular cross section

and jets exiting from lobed nozzles are in progress. The results of these calculations will be

reported later.
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Table 1: Inow Conditions for Simulation Runs

Jet Coow

Case Tabs U T P M Re �10�5 U T P M Mc

(m/s) (Ko) (bar) (m/s) (Ko) (bar)

1 No 695.0 490.0 1.0133 1.566 1.305 220.0 300.0 1.0133 0.634 0.601
2 No 695.0 490.0 0.9322 1.566 1.201 220.0 300.0 1.0133 0.634 0.601
3 6 695.0 490.0 0.9322 1.566 1.201 220.0 300.0 1.0133 0.634 0.601
4 No 950.0 490.0 1.0133 2.141 2.473 50.0 250.0 1.0133 0.158 1.183
5 No 695.0 490.0 1.0133 1.566 1.635 100.0 250.0 1.0133 0.316 0.782
6 4 695.0 490.0 1.0133 1.566 1.305 220.0 300.0 1.0133 0.634 0.601
7 2 695.0 490.0 1.0133 1.566 1.305 220.0 300.0 1.0133 0.634 0.601
8� 6 695.0 490.0 1.0133 1.566 1.305 220.0 300.0 1.0133 0.634 0.601
9 8 695.0 490.0 1.0133 1.566 1.305 220.0 300.0 1.0133 0.634 0.601

Note that � denotes the case with periodic boundary conditions in y.
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Figure 1: Schematic of the channel and coordinate system.
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Figure 2: Grid on the Y � Z plane with Ny = 101 and Nz = 101.
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Figure 3: Sketch illustrating the basic geometry of the model vortices. The point (Yo; Zo) is the
center of one of the vortices, the point (Yj ; Zk) is any grid point on the inow boundary, and
the radial distance between these points is r.
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Figure 4: Pro�les of the streamwise velocity component, U , and temperature, T , as a function
of the dimensionless height, Z=H , at Y=H = 0:5 and X=D = 6:0 as computed on di�erent grids.
The grids in the (Y; Z) plane are: [a] (51� 51); [b] (76� 76); [c] (101� 101); [d] (126� 126).
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Figure 5: Pro�les of the di�erences,�U , in the streamwise velocity component as a function of
the dimensionless height, Z=H , at Y=H = 0:5 and X=D = 6:0. �U is de�ned as the velocity
on a particular coarse grid minus the velocity on the �nest, (126� 126) grid. The notation is:
(Ny �Nz) = [a] (51� 51); [b] (76� 76); [c] (101� 101). In all cases Nx = 145.
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Figure 6: Pro�les of the di�erences,�T , in the temperature �eld as a function of the dimen-
sionless height, Z=H , at Y=H = 0:5 and X=D = 6:0. �T is de�ned as the temperature on a
particular coarse grid minus the temperature on the �nest, (126 � 126) grid. The notation is
the same as in Figure 5.
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Figure 7: Variation of the mixing parameter, �, as a function of X=D on di�erent (Ny � Nz)
grids. In all cases Nx = 145.
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Figure 10: Variation of the mixing parameter � with downstream distance for various values of
the convective Mach number, MC . These calculations were run with no tabs on the edge of the
jet. Values of the ow variables at input are given in Table 1. The dashed curve shows results
for Case 2; at MC = 0:601 but with a slightly reduced pressure in the jet at inow.
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Figure 12: Pro�les of the streamwise normalized velocity component, U=Uo, and temperature,
T=To, as a function of the dimensionless height, Z=H , at Y=H = 0:5 and X=D = 4:0 at di�erent
values ofMC . In each case the velocity and temperature were scaled by the values of the velocity
(Uo) and temperature (To) of the jet at the inow boundary. The solid line denotes results for
MC = 0:601; the long dash line for MC = 0:782; and the short dash line for MC = 1:183.
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Figure 13: The solid curves are the variation of the mixing parameter � with downstream
distance for zero (Case 1), two (Case 7), four (Case 6), six (Case 3) and eight tabs (Case 9) all
atMC = 0:601. Also, results for the case of six tabs and periodic side wall boundary conditions
are shown, again at MC = 0:601. All of these results were obtained using pairs of "necklace"
vortices to simulate the tabs. The dashed curve labeled 4�T is the result with four tabs (Case
6) but with pairs of "trailing" vortices used to simulate the tabs. The dashed curve labeled
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Figure 14: Variation of the jet thickness �=D with downstream distance with zero (Case 1), two
(Case 7), four (Case 6), six tabs (Case 3) and eight tabs (Case 9) all at MC = 0:601. Also,
results for the case of six tabs and periodic side wall boundary conditions are shown, again at
MC = 0:601. The dashed curve labeled No tabs was obtained using the inow data of Case 2.
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Figure 15: Contours of U on the (y; z) plane at x=D = 14:0. The inow conditions are those of

Case 2 ( Table 1 ) and there are no tabs. Contour values are in m/s.
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Figure 16: Vectors of (V;W ) on the inow boundary, x=D = 0:0. The maximum value of the

velocity on this plane is 79.0 m/s. The inow conditions are those of Case 2 ( Table 1 ) and

there are three tabs on both the upper and lower edges of the jet at y=H = 1/4, 1/2 and 3/4.

The vortices are of the "necklace" type resulting from a positive V0.
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Figure 17: Vectors of (V;W ) on the plane at x=D = 1:0. The maximum value of the velocity on

this plane is 85.0 m/s. The inow conditions are those of Case 2 ( Table 1 ) and there are three

tabs on both the upper and lower edges of the jet at y=H = 1/4, 1/2 and 3/4. The vortices are

of the "necklace" type resulting from a positive V0.
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Figure 18: Contours of U on the (y; z) plane at x=D = 1:0. The inow conditions are those

of Case 2 ( Table 1 ) and there are three tabs on both the upper and lower edges of the jet at

y=H = 1/4, 1/2 and 3/4. The vortices are of the "necklace" type resulting from a positive V0.

Contour values are in m/s.
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Figure 19: Vectors of (V;W ) on the plane at x=D = 4:0. The maximum value of the velocity on

this plane is 105.4 m/s. The inow conditions are those of Case 2 ( Table 1 ) and there are three

tabs on both the upper and lower edges of the jet at y=H = 1/4, 1/2 and 3/4. The vortices are

of the "necklace" type resulting from a positive V0.
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Figure 20: Vectors of (V;W ) on the plane at x=D = 10:0. The maximum value of the velocity

on this plane is 66.4 m/s. The inow conditions are those of Case 2 ( Table 1 ) and there are

three tabs on both the upper and lower edges of the jet at y=H = 1/4, 1/2 and 3/4. The vortices

are of the "necklace" type resulting from a positive V0.
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Figure 21: Contours of U on the (y; z) plane at x=D = 10:0. The inow conditions are those

of Case 2 ( Table 1 ) and there are three tabs on both the upper and lower edges of the jet at

y=H = 1/4, 1/2 and 3/4. The vortices are of the "necklace" type resulting from a positive V0.

Contour values are in m/s.
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Figure 22: Vectors of (V;W ) on the plane at x=D = 14:0. The maximum value of the velocity

on this plane is 58.5 m/s. The inow conditions are those of Case 2 ( Table 1 ) and there are

three tabs on both the upper and lower edges of the jet at y=H = 1/4, 1/2 and 3/4. The vortices

are of the "necklace" type resulting from a positive V0.
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Figure 23: Contours of U on the (y; z) plane at x=D = 14:0. The inow conditions are those

of Case 2 ( Table 1 ) and there are three tabs on both the upper and lower edges of the jet at

y=H = 1/4, 1/2 and 3/4. The vortices are of the "necklace" type resulting from a positive V0.

Contour values are in m/s.
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Figure 24: Vectors of (V;W ) on the inow boundary, x=D = 0:0. The maximum value of the

velocity on this plane is 84.5 m/s. The inow conditions are those of Case 6 ( Table 1 ) and

there are two tabs on both the upper and lower edges of the jet at y=H = 1/3 and 2/3. The

vortices are of the "necklace" type resulting from a positive V0.
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Figure 25: Vectors of (V;W ) on the plane at x=D = 14:0. The maximum value of the velocity

on this plane is 56.9 m/s. The inow conditions are those of Case 6 ( Table 1 ) and there are

two tabs on both the upper and lower edges of the jet at y=H = 1/3 and 2/3. The vortices are

of the "necklace" type resulting from a positive V0.
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Figure 26: Contours of U on the (y; z) plane at x=D = 14:0. The inow conditions are those of

Case 6 ( Table 1 ) and there are two tabs on both the upper and lower edges of the jet at y=H =

1/3 and 2/3. The vortices are of the "necklace" type resulting from a positive V0. Contour

values are in m/s.
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Figure 27: Vectors of (V;W ) on the inow boundary, x=D = 0:0. The maximum value of the

(V;W ) velocity on this plane is 84.5 m/s, just as for the results shown in Figure 24. The inow

conditions are those of Case 6 ( Table 1 ) and there are two tabs on both the upper and lower

edges of the jet at y=H = 1/3 and 2/3. The vortices are of the "trailing" type resulting from a

negative V0.
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Figure 28: Vectors of (V;W ) on the plane at x=D = 14:0. The maximum value of the velocity

on this plane is 51.1 m/s, somewhat less than the corresponding case shown in Figure 24. The

inow conditions are those of Case 6 ( Table 1 ) and there are two tabs on both the upper and

lower edges of the jet at y=H = 1/3 and 2/3. The vortices are of the "trailing" type resulting

from a negative V0.
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Figure 29: Contours of U on the (y; z) plane at x=D = 14:0. The inow conditions are those of

Case 6 ( Table 1 ) and there are two tabs on both the upper and lower edges of the jet at y=H =

1/3 and 2/3. The vortices are of the "trailing" type resulting from a negative V0. Contour values

are in m/s.
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Figure 30: Vectors of (V;W ) on the inow boundary, x=D = 0:0. The maximum value of the

velocity on this plane is 88.4 m/s. The inow conditions are those of Case 7 ( Table 1 ) and

there is only one tab on both the upper and lower edges of the jet at y=H = 1/2. The vortices

are of the "necklace" type resulting from a positive V0.
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Figure 31: Vectors of (V;W ) on the plane at x=D = 14:0. The maximum value of the velocity

on this plane is 64.6 m/s. The inow conditions are those of Case 7 ( Table 1 ) and there is

only one tab on both the upper and lower edges of the jet at y=H = 1/2. The vortices are of

the "necklace" type resulting from a positive V0.
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Figure 32: Contours of U on the (y; z) plane at x=D = 14:0. The inow conditions are those

of Case 7 ( Table 1 ) and there is only one tab on both the upper and lower edges of the jet

at y=H = 1/2. The vortices are of the "necklace" type resulting from a positive V0. Contour

values are in m/s.
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Figure 33: Vectors of (V;W ) on the inow boundary, x=D = 0:0. The maximum value of the

velocity on this plane is 88.4 m/s. The inow conditions are those of Case 7 ( Table 1 ) and

there is only one tab on both the upper and lower edges of the jet at y=H = 1/2. The vortices

are of the "trailing" type resulting from a negative V0.
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Figure 34: Vectors of (V;W ) on the plane at x=D = 14:0. The maximum value of the velocity

on this plane is 50.8 m/s. The inow conditions are those of Case 7 ( Table 1 ) and there is

only one tab on both the upper and lower edges of the jet at y=H = 1/2. The vortices are of

the "trailing" type resulting from a negative V0.
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Figure 35: Contours of U on the (y; z) plane at x=D = 14:0. The inow conditions are those

of Case 7 ( Table 1 ) and there is only one tab on both the upper and lower edges of the jet at

y=H = 1/2. The vortices are of the "trailing" type resulting from a negative V0. Contour values

are in m/s.
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Figure 36: Contours of U on the (y; z) plane at x=D = 14:0 for the case in which the side wall

boundary conditions are periodic. Note that because of the periodic boundary conditions the

computational domain extends from y=H = 0:0 to y=H = 1:04. The inow conditions are those

of Case 9 ( Table 1 ) and there are three tabs on both the upper and lower edges of the jet at

y=H = 1/6, 1/2 and 5/6. The vortices are of the "necklace" type resulting from a positive V0.

Contour values are in m/s.
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